

Light-weight ship detection

For onboard AI

Kristian Aalling Sørensen, Peder Heiselberg, Henning Heiselberg National Space Institute of Denmark, Center for Security

Sentinel-1 Revisit Frequency

DTU

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1/observation-scenario

5 days
 10 days
 10 days access from alternated tracks

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage

Sentinel-2 Revisit Frequency

Power
 Information amount
 Downlink/Bandwidth

DTU

Ħ

5 days 10 days 10 days access from alternated tracks

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage

Light-weight ship detection

For onboard AI

Kristian Aalling Sørensen, Peder Heiselberg, Henning Heiselberg National Space Institute of Denmark, Center for Security

AI requirements

AI requirements Operations Safety Model End-user

Object detection models

AI

Fast model:

Fast model: 1-stage

- Make as small as possible (less parameters)
- Introduce more efficient deep learning layers
- Make it better for small objects

....

Results

Table 1: State of the art FOSS models

Table 1: Improved models

Augmentation	Depth-wise separable	Dilation rate	parameters	AP _{0.5} (%)	R (%)
X	X	X	1.94	96.58	93.13
\checkmark	×	×	1.94	96.67	93.56
\checkmark	×	×	0.529	96.10	92.54
\checkmark	\checkmark	\checkmark	0.330	95.63	92.25

Results - small

Model name	AP _{0.5} (%)	AP _{0.5:0.9} (%)	R (%)	P(%)	Parms(M)
YOLOv3tiny	57.9	32.6	42.2	90.0	12.13
YOLOv3sppu	85.5	52.9	77.8	93.4	104.7
YOLOv5mu	85.8	50.2	78.7	89.6	25.07
YOLOv8n	74.7	37.4	71.3	88.8	3.01
YOLOv8x	88.5	55.1	82.9	93.3	68.2

Table 1: State of the art FOSS models

Table 1: Improved models

Augmentation	Depth-wise separable	Dilation rate	parameters	AP _{0.5} (%)	R (%)
X	×	×	1.94	96.58	93.13
\checkmark	×	×	1.94	96.67	93.56
\checkmark	×	×	0.529	96.10	92.54
\checkmark	\checkmark	\checkmark	0.330	95.63	92.25
<u></u>					

Results - "good enough"

Table 1: State of the art FOSS models

Table 1: Improved models

Augmentation	Depth-wise separable	Dilation rate	parameters	AP _{0.5} (%)	R (%)
X	X	×	1.94	96.58	93.13
\checkmark	×	×	1.94	96.67	93.56
\checkmark	×	×	0.529	96.10	92.54
\checkmark	\checkmark	\checkmark	0.330	95.63	92.25

DTU

DTU

0

10

 20^{-1}

30-

Model can detect ships in arbitrary sizes

2500x2500 pixels

32 sec for entire image

8000x8000 pixels

15000x15000 pixels

27 sec for entire image

28 sec for entire image

Onboard AI framework

Considerations

- 1. Model should be a small as possible. 330.000 Parameters ~800 KB
- 2. Model should be as efficient as possible.
- 3. Model should be as fast as possible.30 sec on my laptop
- 4. Model should be "good enough". Not focus on getting the highest accuracy
 92.5 % of all ships are found
- Image should have as little pre-processing as possible
 Detect ships in un-calibrated images

UIU

Light-weight ship detection

For onboard AI

Kristian Aalling Sørensen, National Space Institute of Denmark, Center for Security

DTU

